影响粘结强度的化学因素
响粘接强度的化学因素主要指分子的极性、分子量、分子形状(侧基多少及大小)、分子量分布、分子的结晶性、分子对环境的稳定性(转变温度和降解)以及胶粘剂和被粘体中其它组份性质PH值等。
1、极性
一般说来胶粘剂和被粘体分子的极性影响着粘接强度,但并不意味着这些分子极性的增加就一定会提高粘接强度。从极性的角度出发为了提高粘接强度,与其改变胶粘剂和被粘体全部分子的极性,还不如改变界面区表面的极性。例如聚乙烯、聚丙烯、聚四氟乙烯经等离子表面处理后,表面上产生了许多极性基团,如羟基、羰基或羧基等,从而显著地提高了可粘接性。
2.分子量
聚合物的分子量(或聚合度)直接影响聚合物分子间的作用力,而分子间作用力的大
小决定物质的熔点和沸点的高低,对于聚合物决定其玻璃化转变温度Tg和熔点Tm。所以聚合物无论是作为胶粘剂或者作为被粘体其分子量都影响着粘接强度。
一般说来,分子量和粘接强度的关系仅限于无支链线型聚合物的情况,包括两种类型。第一种类型在分子量全范围内均发生胶粘剂的内聚破坏,这时,粘接强度随分子量的增加而增加,但当分子量达到某一数值后则保持不变。第二种类型由于分子量不同破坏部分亦不同。这时,在小分子量范围内发生内聚破坏,随着分子量的增大粘接强度增大;当分子量达到某一数值后胶粘剂的内聚力同粘附力相等,则发生混合破坏;当分子量再进一步增大时,则内聚力超过粘附力,浸润性不好,则发生界面破坏。结果使胶粘剂为某一分子量时的粘接强度为最大值。
3.侧链
长链分子上的侧基是决定聚合物性质的重要因素,从分子间作用力考虑,聚合物支链的影响是,当支链小时,增加支链长度,降低分子间作用力。当支链达到一定长度后,开始结晶,增加支链长度,提高分子间作用力,这应当是降低或提高粘接强度的原因。
4.PH值
对于某些胶粘剂,其PH值与胶粘剂的适用性,有较为密切的关系,影响到粘接强度和粘接寿命。一般强酸、强碱,特别是当酸碱对粘接材料有很大影响时,对粘接常是有害的,尤其是多孔的木材、纸张等纤维类材更容易受影响。由于像热固性的酚醛树脂和脲醛树脂的固化过程受PH值的影响很大,常常要求酸度较大。例如,固化时在酚醛树脂中加入对甲苯磺酸或磷酸,在脲醛树脂中加入氯化铵或盐酸。因此,在不希望酸度大又要粘接的场合,选用中性的间苯酚甲醛树脂是适宜的将木材表面预先用碱处理,一般可得到牢固的接头。但还必须注意胶层的PH值,它对胶层比对被胶接表面更有影响。
5.交联
聚合物的内聚强度随交联密度的增加而增大,当交联密度过大时聚合物则变硬变脆,因而使聚合物耐冲击强度降低。交联聚合物的强度与交联点数目和交联分子的长度密切相关,随着交联点数目的增多,交联间距的变短以及交联分子长度的变短,交联聚合物会变得又硬又脆。
6.溶剂和增塑剂
溶剂型胶粘剂的粘接强度当然要受胶层内残留溶剂量的影响。溶剂量多时,虽浸润性好,但由于胶粘剂内聚力变小,而使内聚强度降低。胶粘剂聚合物之间的亲合力大时,随着溶剂的挥发粘接强度增大。两者之间无亲合力时,残留一些溶剂时胶粘剂的粘附性却较大,随着溶剂的挥发,强度反而下降。例如聚醋酸乙烯不能粘接聚乙烯,但加入少量溶剂后则可粘接。显然,溶剂起了增加两者间亲合力的作用。
增塑剂和溶剂的作用类似,有时即便在粘不上的情况下,加入适当的增塑剂也可粘上。但是,增塑剂也将随着时间的推移或是挥发,或是向表面渗出,在增塑剂减少的同时粘接强度不断下降。相反,有时被粘物内的增塑剂也会渗移到胶层里,使胶粘剂软化而失去内聚粘接强度。或增塑剂聚集在界面上而使粘接界面分离。
7.填料
在胶粘剂中配合填料有如下作用:
(1)增加胶粘剂的内聚强度;
(2)调节粘度或工艺性(例如触变性);
(3)提高耐热性;
(4)调整热膨胀系数或收缩性;
(5)增大间隙的可填充性;
(6)给予导电性;
(7)降低价格;
(8)改善其他性质。
8.结晶性
结晶度高的聚合物分子的缩聚状态是有规则的,如果熔点不高,加热结晶聚合物,将使结晶范围内的有序的分子排列发生混乱,分子开始向熔融状态过渡。因此,结晶度高的聚合物适宜作热熔。
9.分解
在使用过程中,胶粘剂分解是使粘接强度降低成的重要因素,而使胶粘剂分解的原因有水、热、辐照、酸、碱及其他化学物质。聚合物与水反应而分解称为水解。加热常常有可能导致聚合物交联,聚合物抗水解能力因其分子中化学键的不同面而异。多数水溶性聚合物易于水解。不溶于水的聚合物水解就非常慢,而聚合物吸附水的能力对水解起着重要作用,聚合物水解也受结晶性和分子链的构象的明显影响。由于微量的酸或碱可加速某些聚合物水解,聚酯类缩合树脂与酸或碱接触时,很容易水解。环氧树脂的耐湿性根据固化剂的种类和使用环境不同而有明显的不同,以聚酰胺固化的环氧树脂因酰胺键水解而破坏;以多元酸酐固化的环氧树脂因酯键的断裂而解体;聚氨酯也常因酯键水解而破坏,而具有醚键、碳-碳键结构的聚合物,如酚醛树脂、丁苯、丁腈橡胶,就不易水解,耐水性良好。
聚合物加热过度将引起下列变化:
(1)聚合物分子的分解;
(2)继续交联;
(3)可挥发和可迁移成分的逸出。
这些过程的结果将导致胶粘剂内聚强度下降或界面作用力降低。聚合物在高温下会发生降解和交联的作用,降解使聚合物分子链断裂,分子量下降,使聚合物强度降低,交联使分子间形成新的化学键,分子量增加,聚合物强度上升。粘接接头上聚合物不断交联将使聚合物发脆,接头强度变坏。
影响粘接性能的环境因素
粘接接头必须承受外力的作用,也要经受使用环境因素的考验,如温度、湿度、化学介质、户外气候等都会影响粘接强度。胶粘剂如果在恶劣环境下使用,应该做环境的模拟试验。
胶粘剂在两种曝露条件下的老化实验有:
(1)典型的实验室加速老化;
(2)典型的大气老化。
有人认为工加速老化试验能排列胶粘剂的耐水性和环境对内聚强度影响的顺序。然而,
通常的户外大气老化试验是以金属界面耐腐蚀能力排列胶粘剂顺序的。
1.高温
所有暴露于高温环境下的聚合物,都会发生某种程度的降解,经高温试验后,力学性能降低。在热老化时,力学性能也有降低。最新研制的一些聚合物胶粘剂,能耐260~310℃的高温。对于耐高温的胶粘剂来说,熔点或软化点一定要高,且应抗氧化。热塑性胶粘剂室温下能获得良好的粘接效果,然而,一旦使用温度达到胶粘剂的玻璃化温度,就会造成胶层变形,使内聚合强度降低。热固性胶粘剂没有熔点,由大分子高度交联的网络构成,多数都适合在高温下使用。热固化的关键问题是因热氧化和高温分解引起的强度降低速率。
耐高温胶粘剂通常具有刚性的高分子结构,很高的软化温度和稳定的化学基团。这些都给粘接工艺带来困难。故只有为数不多的热固性胶粘剂能在177℃高温下长期使用。
2.低温和深冷
当温度从室温降至-253℃时,剪切强度超过689Mpa的胶粘剂定义为超低温胶粘剂。带有深冷液体燃料的宇宙飞船,穿过外层空间重新返回地球大气层时,其速度大于3马赫,胶粘剂经受的温度从-253℃升到816℃。超低温胶粘剂主要用于金属和非金属与其外部绝缘体的粘接,也可作为密封剂使用,多数翼型结构的油箱和耐压型舱壁都是用胶粘剂密封的。室温硫化(RTV)苯基硅橡胶,被确认为能在超低温下使用的密封剂和胶粘剂。实践表明,RTV硅橡胶在高温(316℃)短期工作是很有用途的,较好的超低温胶粘剂才能耐受如此高温。超低温条件下的接头存在许多问题都是接头内产生应力集中和应力梯度的结果,接头
应力集中的因素很多,而超低温又加剧了应力集中,引起应力集中的主要原因是:
(1)胶粘剂与被粘物的热膨胀系数不同;
(2)固化时胶粘剂的体积收缩;
(3)胶接时包住或放出气体;
(4)胶粘剂与被粘物的弹性模量和剪切强度的差异;
(5)粘接施加压力卸除后,被粘物保留的残余应力;
(6)胶粘剂或被粘物的非弹性;
(7)胶粘剂或被粘物的塑性;
在室温下低模量的胶粘剂容易变形,因而能减缓应力集中,但在超低温时,弹性模量达到某一值后,胶粘剂不能再有效地减缓应力集中(弹性模量一般随温度降低而增加)。为了得到较稳定的力学性能,应采取适当措施,使胶粘剂与被粘物的热膨胀系数相接近。在超低温时,导热性对减少瞬时应力起重要作用,减薄胶层和提高导热性能,可减少瞬时应力。聚氨酯是最好的一种超低温胶粘剂,目前使用的室温固化聚氨酯胶粘剂在-253℃时的剪切和拉伸强度以及剥离强度和冲击性能都比早期的聚氨酯好,这种情况与多数结构胶粘剂恰好相反。聚氨酯胶粘剂在-253℃时强度增加,而在室温和高温下却降低。
3.湿气和浸水
湿气通过两种方式影响粘接强度。某些高分子材料,尤其是含酯键的聚氨酯,在湿热环境下会水解而丧失强度和硬度,严重时甚至液化。水还会渗入胶层,取代粘接界面的胶粘剂,这是在潮湿环境下粘接强度降低的最普遍原因。水解的速率取决于胶粘剂基料的化学结构、催化剂类型、用量、以及胶粘剂的柔性。某些化学键,如酯、氨酯、酰胺和脲,都能被水解。有些类型的聚氨酯和酸酐固化的环氧树脂中的酯键水解速率最快。在大多数情况下,以酰胺固化的环氧树脂的水解稳定性比酸酐固化的好。可水解材料的水解速率还与配方中催化剂的用量有关。适当选择基料与催化剂的配量,能得到较好。
以上关于PVDF锂电池粘接剂粘接效果分析内容为上海春毅新材料原创,请勿转载!